

KEY INDUSTRIAL SUPPLIES LIMITED

#75 Union Road, Marabella, Trinidad, West Indies, Mailing Address: P.O. Box 4221 Claxton Bay, Tel: (868) 6580021 / 658-0028 Fax: (868) 658-2354
Email: ryanl@keyindustrial.biz / shauntellep@keyindustrial.biz

ANODES: Zinc, Aluminum & Magnesium

Galvanic Corrosion is created when metals of different potentials are attached to each other and submerged in water or any solution that carries electrical current. Since different metals corrode at different rates, a current flow will be created from the faster corroding metal (anode) to the slower corroding metal (cathode). A reliable anode must be capable of continuously supplying electrical current throughout its life. HARBOR anodes are made from high purity base metals before being alloyed with controlled amounts of additives to enhance electrochemical properties and to offset the small amount of impurities that detract from current output. Improper or unalloyed anodes start off with a high current output which tapers off over time, thus providing insufficient current for long term protection.

The three main metal alloys used as galvanic anodes are Zinc, Aluminum and Magnesium. Each alloy has both advantages and disadvantages, dependant on many variable situations. Care should be taken to determine which type of anode is installed

Magnesium has the most negative electro potential of the three and is more suitable for areas where the electrolyte (soil or water) resistivity is higher. This is usually on-shore pipelines and other buried structures, although it is also used on boats in fresh water and in water heaters.

Zinc is considered a reliable material, but is not suitable for use at higher temperatures, as it tends to passivate (becomes less negative); if this happens, current may cease to flow and the anode stops working. Zinc has a relatively low driving voltage, which means in higher-resistivity soils or water it may not be able to provide sufficient current.

Aluminum anodes have several advantages, such as a lighter weight, and much higher capacity than zinc. However, their electrochemical behavior is not considered as reliable as zinc, and greater care must be taken in how they are used.

Zinc and Aluminum are generally used in salt water, where the resistivity is generally lower. Typical uses are for the hulls of ships and boats, offshore pipelines and production platforms, in salt-water-cooled marine engines, on small boat propellers and rudders, and for the internal surface of storage tanks.

PHYSICAL PROPERTIES

ZINC

COMPOSITION	TYPICAL "HARBOR" ANODES	MIL SPEC A-18001K
Aluminum	0.25	.15
Cadmium	0.05	.02507
Iron	0.001	.005 max
Copper	0.001	.005 max
Lead	0.002	.006 max
Zinc	Balance	Balance
Indium	1058	35
Silicon	840	22 <u>-</u> 3
Mercury	注意 成	8573
Tin	1121	722
Manganese	(1 4) -	2
Nickel	10	
Magnesium	114	1211
Other Imp	00	10 71 0

ALUMINUM TYPICAL 'HARBALUM'' MIL SPEC

	MIL OF LO	
ANODES	A-24779	
Balance	Balance	
120	9 C	
.06	.09 max	
.003	.004 max	
7420	2	
6.0	4.0 - 6.5	
0.017	.014020	
0.15	.0820	
1776	.001 max	
726	.001 max	
(4 0) (-	
3795	5	
7 2 %	-	
s a di	.020 max	

H-1			HIGH	
GRADE A	GRADE B	GRADE C	POTENTIAL	GALVOROD
5.3 - 6.7	5.3 - 6.7	5.3 - 6.7	0.01 max	2.5 - 3.5
2	123	12	-	722
.003 max	.003 max	.003 max	0.03 max	.002 max
0.02 max	0.05 max	0.1 max	0.02 max	0.01 max
<u>e</u>	323	12	2	525
2.3 - 3.5	2.3 - 3.5	2.3 - 3.5	12	0.7 - 1.3
0.1 max	0.2 max	0.3 max	0.05 max	.05 max
1	.	.		8.77
222		<u>2</u>	2 <u>0</u>	722
.15 min	.15 min	.15 min	0.50 - 1.30	.20 min
0.002 max	0.003 max	0.003 max	0.001 max	0.001 max
Balance	Balance	Balance	Balance	Balance
.20 max	.20 max	.30 max	0.30 max	.30 max

MAGNESIUM

ELECTROCHEMICAL PROPERTIES

Theoretical ampere-hours per pound
Current Enrolency (percent)
Actual ampere-hours per pound
Consumption, pounds per ampere yea
Potential (reference Cu/Cu/SO4)
Closed Circuit Potential (Cu/Cu/SO4)
Open circuit Potential (Cu/Cu/SO4)

ZINC

ALUMINUM

MAGNESIUM

ZINC	
HARBOR	
MIL-A-18001	
372	
95	
354	
24.8	
-1100m/v	
50	
	-

	ALUMINUM	
	HARBALUM	
	MIL-A-24779	
	1352	
1	85	
	1150	
	7.62	
	-1150m/v	
	2 3	

MAGNESIUM		
H-1	HIGH POTENTAIL	
272	-	
50 - 54	50 - 55	
500 - 540	500 - 550	
17	17	
20 4 0	1241	
-1.45 to -1.55v	-1.50 to -1.75v	
-1.50 to -1.60v	-1.70 to -1.75v	

Differences between ZINC – ALUMINUM – MAGNESIUM Anodes

Zinc Anodes work well in salt and the upper saline levels of brackish waters. In lower levels of brackish and fresh waters, zinc doesn't have the current output to fully protect, however, partial protection occurs.

Aluminum Anodes work well in salt and the upper saline levels of brackish waters. In lower levels of brackish and fresh waters, aluminum anodes can film over by not sloughing its consumed metal which causes passivation and the possibility of a total loss of galvanic protection.

Magnesium Anodes work well in salt, brackish and fresh waters. Fresh water use is more prevalent due to the possible "over-protection" that may occur in the less resistant environments of salt and upper saline level of brackish waters.

Summary: There are several factors that play into which type of anode to use on any given structure or vessel. These include water salinity, water temperature, water speed, metals to be protected, required anode life span, etc. For vessel protection, typical speed and how often the vessel is used can make a difference in choosing the proper protection. Changing habits in a vessel's use can also change the type of anode required for protection. Since electrical currents change every time a vessel travels into different environments (waters), there is no absolute value to the corrosion rates of metals so each vessel (or structure) must be looked at individually for the proper protection.

<u>METAL</u>	NATURAL READINGS	PROTECTED READINGS
Magnesium	350 to550	550 to750
Zinc	+.050 to150	150 to350
Aluminum	+.050 to150	150 to350
Cadmium	+.050 to150	150 to350
Steel	+.350 to +.550	+.150 to +.350
Cast Iron	+.350 to +.550	+.150 to +.350
Aluminum Bronze	+.400 to +.600	+.200 to +.400
Tin	+.400 to +.600	+.200 to +.400
Copper	+.400 to +.600	+.200 to +.400
Tin/Lead Solder	+.450 to +.650	+.250 to +.450
Brass	+.450 to +.650	+.250 to +.450
Manganese Bronze	+.450 to +.650	+.250 to +.450
Silicon Bronze	+.500 to +.750	+.300 to +.550
Copper/Nickel	+.500 to +.750	+.300 to +.550
Lead	+.650 to +.850	+.450 to +.650
Silver	+.650 to +.850	+.450 to +.650
Titanium	+.700 to +.900	+.500 to +.700
Platinum	+.950 to +1.150	+.750 to +.950
Graphite	+1.05 to +1.250	+.850 to +1.050

ZINC Reference Cell "Interpretation Readings"

Protected Steel: CuCu/So4 @ -.85v Protected Steel: Zinc Reference Cell @ -.25v